Multichannel analysis of correlation length of SEVIRI images around ground-based cloud observatories to determine their representativeness
نویسندگان
چکیده
Images of measured radiance in different channels of the geostationary Meteosat-9 SEVIRI instrument are analysed with respect to the representativeness of the observations of eight cloud observatories in Europe (e.g. measurements from cloud radars or microwave radiometers). Cloudy situations are selected to get a time series for every pixel in a 300 km× 300 km area centred around each ground station. Then a cross correlation of each time series to the pixel nearest to the corresponding ground site is calculated. In the end a correlation length is calculated to define the representativeness. It is found that measurements in the visible and near infrared channels, which respond to cloud physical properties, are correlated in an area with a 1 to 4 km radius, while the thermal channels, that correspond to cloud top temperature, are correlated to a distance of about 20 km. This also points to a higher variability of the cloud microphysical properties inside a cloud than of the cloud top temperature. The correlation length even increases for the channels at 6.2, 7.3 and 9.7 μm. They respond to radiation from the upper atmospheric layers emitted by atmospheric gases and higher level clouds, which are more homogeneous than low-level clouds. Additionally, correlations at different distances, corresponding to the grid box sizes of forecast models, were compared. The results suggest the possibility of comparisons between instantaneous cloud observations from ground sites and regional forecast models and ground-based measurements. For larger distances typical for global models the correlations decrease, especially for short-wave measurements and corresponding cloud products. By comparing daily means, the correlation length of each station is increased to about 3 to 10 times the value of instantaneous measurements and also the comparability to models grows.
منابع مشابه
Comprehensive Analysis of Dense Point Cloud Filtering Algorithm for Eliminating Non-Ground Features
Point cloud and LiDAR Filtering is removing non-ground features from digital surface model (DSM) and reaching the bare earth and DTM extraction. Various methods have been proposed by different researchers to distinguish between ground and non- ground in points cloud and LiDAR data. Most fully automated methods have a common disadvantage, and they are only effective for a particular type of surf...
متن کاملShort-Term Forecasting of Surface Solar Irradiance Based on Meteosat-SEVIRI Data Using a Nighttime Cloud Index
The cloud index is a key parameter of the Heliosat method. This method is widely used to calculate solar irradiance on the Earth’s surface from Meteosat visible channel images. Moreover, cloud index images are the basis of short-term forecasting of solar irradiance and photovoltaic power production. For this purpose, cloud motion vectors are derived from consecutive images, and the motion of cl...
متن کاملStatistical cloud detection from SEVIRI multispectral images
Cloud detection from geostationary satellite multispectral images through statistical methodologies is investigated. Discriminant analysis methods are considered to this purpose, endowed with a nonparametric density estimation and a linear transform into principal and independent components. The whole methodology is applied to the MSG-SEVIRI sensor through a set of test images covering the cent...
متن کاملEigenvalues-based LSB steganalysis
So far, various components of image characteristics have been used for steganalysis, including the histogram characteristic function, adjacent colors distribution, and sample pair analysis. However, some certain steganography methods have been proposed that can thwart some analysis approaches through managing the embedding patterns. In this regard, the present paper is intended to introduce a n...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015